

The avanta baseplate cooled DCDC is a mil-spec, low profile, fully compliant, isolated, base plate cooled DCDC power supply with a fully regulated output of up to 150W.

Designed for harsh military applications, the AVMIL-DB-150-28 is available with a wide 9V to 38VDC input for 12V and 28V military systems, for both platform and terminal connected equipment.

Integrated EMC filtering to MIL-STD 461 and surge protection to MIL-STD 704/ 1275/ DEF-STAN 61-5-part 6 issue 5/6/7 allows for direct connection to the supply voltage. The load dump feature provides full ride through protection against the 202V DC surge required to meet the DEF-STAN 61-5-part 6 issue 6 with no loss of output voltage.

Benefit	Feature
No need for additional filters	EMC to MIL-STD 461G
	Surge & Transient Protection
	to:
	MIL-STD 1275E DEF-STAN
	61-5 Part 6
	Reverse Polarity Protection
Simple to cool	Base plate cooled
Fits anywhere	Small form factor
	Aerospace compliant
	Land compliant
	Marine compliant
Easy to integrate	Stocked connectors
Available off the shelf	Distributor stocked

TECHNICAL DETAILS

Input Specifications

9V to 36V DC (power derated by up to 25% at 9V input) Input Voltage

Max Input Current

Input Surge 200V 350ms reducing curve (as per DEF-STAN 61-5 Part 6 Issue 6)

Turn On Voltage 9V Turn Off Voltage 8V

Threshold

Output Specifications

Output Voltage 28V +/- 2% **Load Regulation** Line regulation +/- 2% **Output Ripple** <150mV Maximum Output Current 5.3A

Protection

Over Current Protection 125% Typical Over Voltage Protection 125% Typical

Short Circuit Protection Continuous, Auto Recovery, Hiccup Mode

Over Temperature

Protection

105C at the Centre of the Baseplate

Efficiency

100% Load 89% at Nominal Input Voltage

Turn On Time 30ms

Isolation

Input to Output 1,500VDC Input to Case 1,500VDC Output to Case 1,500VDC Isolation Resistance Input 100MOhm

to Output

Switching Frequency 285kHz Typical **MTBF** >100 KHrs

EMC

Mil Standards

Mil-Std 461G CE101, CE102, CS101, CS103,

MIL-Std 1275D,E,F 50ms Hold-Up Shock/Vibration MIL-Std 810F

DEF-Standards

DEF-STAN 59-411 DCE01, DCE02, DCS02, DCS02, DCS12(Option)

DEF-STAN 00-35

DEF-STAN 61-5 Part 6 Issue 6 Surge and Load Dump

CE / UKCA

Environmental

option m operating temperature -46°C to +90°C (storage -55°C to +105°C)

over temperature shut down110°C (automatic re-start at 95°C)

conduction cooled through baseplate

operating humidity DO-160E section 6 category B operating altitude 51,000 ft

operating below sea level 1,500 ft

shock & vibration DO-160E Shock +-6g 11ms any direction

BS EN60068-2-27 15g shocks 11ms 1/2 sine

vibration DO-160E section 8 procedure 8.7.2 test level C1

WEEE directive 2002-96-EC RoHS directive 2002-95-EC

REACH regulations EU-1907-2006 HAZMAT compliant

unit is conformal coated with non-fungus growth compliant coating (option)

EMC and safety

safety approvals EN60950-1:2006

emissions MIL-STD-461E/F,

DEF STAN 59-411 with additional input filter

ESD immunity EN61000-4-2, Level 3

radiated immunity EN61000-4-3, 10V/m, level 3 performance criteria a surge EN61000-4-5, installation class 3, perf criteria a

conducted immunity EN61000-4-6, 10V RMS, perf criteria a

Standard signals and indicators

36V clamped output for auxiliary equipment (max 3A)

global disable: turns off the main output and the auxiliary output, input 0V referenced signal

regulated output disable: turns off the main regulated output(s), output OV referenced signal

remote sense to compensate for output voltage drops in cables (compensation up to 0.5V across the leads)

global PSU OK: floating opencollector: closed = PSU OK, open = PSU FAIL

base plate temperature signal: provides an accurate voltage proportional to the internal PSU temperature. This signal can be used to warn of a potential over temperature situation that may be the result of a system cooling failure, vastly improving the up time of a system

Connections & Pinouts

CN1 Main Input Connector & CN2 Main Output Connector

Pair of M4 studs for connecting + &- Input/Output

CN3 Input Signals Connector

PCB (B8B-PHDSS) mating half is PHDR-08VS housing, crimps SPHD-001T-P0.5

- 1 Auxiliary output Unregulated and clamped to 36V DC (max 3A), referenced to input 0V.
- 2 Input side 0V
- 3 Disable connect to input OV to turn all outputs off, leave open/high to turn all outputs on.
- 4 n/c
- 5 n/c
- 6 n/c
- 7 n/c
- 8 n/c

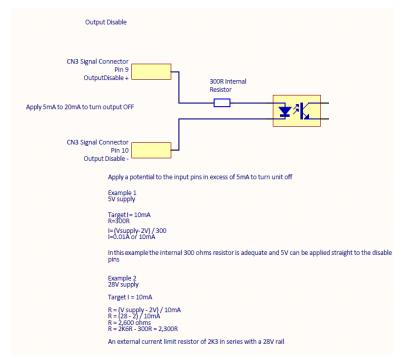
CN4 Output Signals Connector

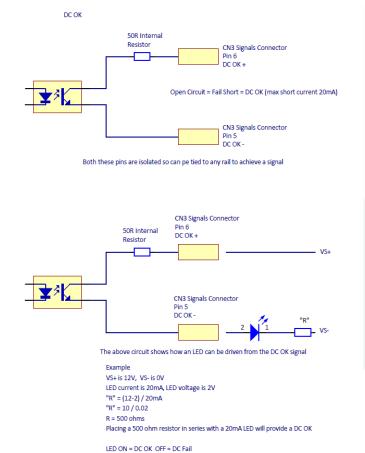
PCB (B10B-PHDSS) mating half is PHDR-10VS housing, crimps SPHD-001T-P0.5

- 1 n/c
- 2 Remote sense negative (trim 0.5V max)
- 3 n/c
- 4 Remote sense positive (trim 0.5V max)
- 5 DC OK (emitter of an opto isolator 20mA max) Short = DC OK
- 6 DC OK + (collector of an opto isolator 20mA max) Short = DC OK
- 7 n/c
- 8 Base plate temperature signal (23 deg C = 580mV),

referenced to the output OV VO = $(+6.25 \text{ mV/°C} \times \text{T °C}) + 424 \text{ mV}$

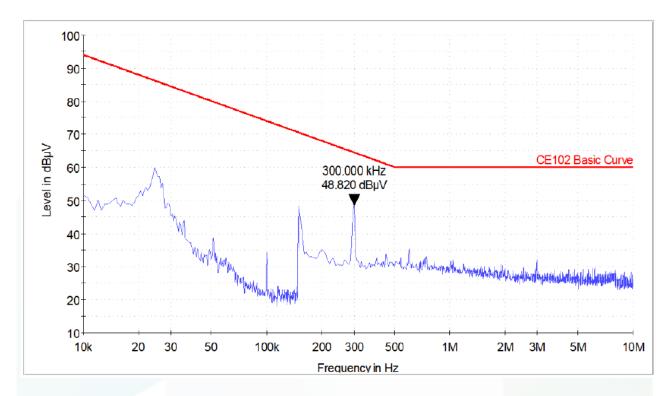
Temperature (T) Typical VO


- +125°C +1205 mV
- +100°C +1049 mV
- +25°C +580 mV

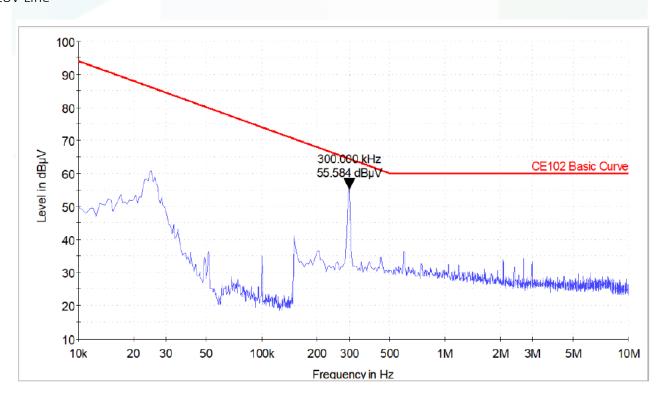

0°C +424 mV

- -25°C +268 mV
- -40°C +174 mV
- 9 Output disable (+) (5v applied across this pin and pin 10 disables the regulated output)
- 10 Output disable (used in conjunction with pin 9)

Signals Control



Temperature output CN3 Signals Connector Base Plate Temperature Signal Main Output 0V This signal is referenced to the Zero Volt output. A current of < 1mA can be driven from this device The Formula to calculate temperature is T = (VO - 424mV) / 6.25mV Example 1 Where VO = 580mV T = (580 - 424) / 6.25 T = 25C Example 2 Where VO = 1049mV T = (1049 - 424) / 6.25 T = 100C



EMC Characteristics

MIL-Std 461G, CE102

28V Line

28V Rtn

